
3D ARTIST

THESIS:
Real Time Webcam Capture & Basic E�ects
Using C# and Unity

Caitlyn Trout

1 | Background Information of Importance

Lets take a moment to talk about the CPU
versus the GPU. For me, I hear these terms get
thrown around by my team of programmers a
lot. For the rest of the paper it would be nice to
have a basic understanding for both in the
back of our minds.

The CPU, or the central processing unit, is what
performs the functions of the computer’s
software. Its sort of the central control that
tells the computer what to do as outlined by
the software and the user.

The GPU, or the graphics processing unit, is a
part of the rendering system of your computer
that works along with you graphics card. It has
parallel processes that are specialized for
rendering parts of images together for faster
speeds.

Another term to have in the background is
pixel shader. What’s a pixel shader? Well, its a
shader that e�ects pixels. Simple enough
right? Sort of.

Pixel shaders are graphic functions the work in
tandem with vertex shaders to calculate e�ects
on a per pixel basis. It’s where we tell the GPU
how to render, light, shade, and color our
resolution of pixels per frame.

Alright let us open up Unity and start the
tutorial.

2 | Unity Basic Scene Setup

This step is setting up a simple scene in Unity with a few planes to display our webcam footage on.
Start by setting up a new project. This, like most other project setups, will give you all the neces-
sary folders and whatnot. Name it and save it whatever and wherever you like. Just someplace
that’s easily accessible.

I created three planes, again, name them anything you like. We will reference them in C# using a
public variable declaration which is quite nifty. I’m using a white unlit texture to display my
webcam footage. You can create and just drag on top of your planes to apply the texture.

With that, right click in the
project window and say :
create > C# script. Name
this something simple.

I named mine
WebCamTex_Script.

3 | Standard Starter Script in Unity

OK, so you’ve created a new C# script and named it appropriately. A separate window will open if
you double click . The MonoDevelop window is where we are going to be doing the bulk of our
work in code.

The �rst thing you will notice is that two functions or methods were automatically generated with
the script. The �rst called Start() and the second called Update(). These do exactly what they say
they do. Code in Start() will run at the beginning of the program (much like an __init__). Code in
Update() will update every frame. This is super useful and we will be using both methods here in
our webcam script.

They even comment them for you in green. Isn’t that nice?

4 | Declaration of Our Needed Variables and Assignment of GameObjects

Inside your class you will want to declare needed variables and their data types for use in your
script. I’m making three public game objects and calling them Plane1, Plane2 & Plane3. The other
three private variables are the webcam texture itself (which you will notice has its own data type
in Unity... just a little Unity magic) and two 2d textures. You can call them whatever you like . Of
course, you will want the variable names to be self de�ning. Just good programming practice.

Heres a nifty trick. Drag your script �le on top of your �rst plane. Drop down the componet and
you will see the public variables you created. You can now drag objects to these public variables.
This gives you access to them in code and is pretty self explanitory for anyone else who might be
viewing your scene in the future.

Drag game objects from your scene to this position in the scripts component dropdown.

5 | The WebCamTexture

Accessing the webcam on your computer and hooking it up to a texture in your scene is fairly
simple at this point. Initialize the webcam in your start function (along with you 2D textures which
I’m feeding pixel width and height).

 for(int i=0; i<webCamTex.width; i++)
 {
 for (int j=0; j<webCamTex.height; j++)
 {
 //Grayscale Effect
 Color pixel = webCamTex.GetPixel (i,j);
 grayWebCamTexture.SetPixel(i,j,new Color(pixel.grayscale, pixel.grayscale, pixel.grayscale, 1f));
 }
 }

 Plane3.renderer.material.mainTexture=grayWebCamTexture;
 grayWebCamTexture.Apply();

Make sure to set the texture of your �rst plane to your webcam texture and call the play() argu-
ment last to start streaming. You can test your code and see if everything works by playing your
unity scene.

6 | The Grayscale Code

Thus far we haven’t actually done anything with the webcam data. We’ve only declared and
instantiated everything and started streaming. Now lets write something in our update function
so that our scene updates every frame.

Sorry for small font (trying to �t full line).

Ok so the short answer for this code is that it is a double for loop to write a texture from pixel data.
(Amazing...its like those textures we created in the beginning had a purpose.) We are iterating
through the pixels and calling a grayscale argument that will desaturate the color out. Once we
have done this for all, we set the pixels for our grayWebCamTexture. Assign the material texture
for Plane3 to this newly created gray masterpiece and call the Apply() argument.

Test your scene again and you will �nd two animated textures based on you webcam input.
Pretty cool right?

 for(int i=0; i<webCamTex.width; i++)
 {
 for (int j=0; j<webCamTex.height; j++)
 {
 //Grayscale Effect
 Color pixel = webCamTex.GetPixel (i,j);
 grayWebCamTexture.SetPixel(i,j,new Color(pixel.grayscale, pixel.grayscale, pixel.grayscale, 1f));
 }
 }

 Plane3.renderer.material.mainTexture=grayWebCamTexture;
 grayWebCamTexture.Apply();

 for(int i=0; i<webCamTex.width; i++)
 {
 for (int j=0; j<webCamTex.height; j++)
 {
 //Grayscale Effect
 Color pixel = webCamTex.GetPixel (i,j);
 float rChannel = Simplify(pixel.r);
 float gChannel = Simplify(pixel.g);
 float bChannel = Simplify(pixel.b);
 modWebCamTexture.SetPixel(i,j,new Color(rChannel,gChannel,bChannel, 1f))
 grayWebCamTexture.SetPixel(i,j,new Color(pixel.grayscale, pixel.grayscale, pixel.grayscale, 1f));
 }
 }

 Plane3.renderer.material.mainTexture=grayWebCamTexture;
 grayWebCamTexture.Apply();

 Plane2.renderer.material.mainTexture=modWebCamTexture;
 modWebCamTexture.Apply();

7 | Over Saturated/Exposed Effect

Ok for the �nal e�ect in the scene, I’m going to simplify the color palate giving it a blocked out/
over exposed look. We already have the double for loop from before, lets use it again tor write
another texture. Add this code in red:

Just adding this will not be enough, you’ll get a pretty compile error because I haven’t introduced
our third and �nal menthod: Simplify(). In this method I’m simplifying color ranges of our webcam
pixels. Its not complicated code but does have quite a bit of else if statements. The code is
displayed on the next page. The method returns �oat x which is the rounded value of either our
.r, .g or .b channel value. The alpha for our new texture is always 1 so its hard coded in.

 for(int i=0; i<webCamTex.width; i++)
 {
 for (int j=0; j<webCamTex.height; j++)
 {
 //Grayscale Effect
 Color pixel = webCamTex.GetPixel (i,j);
 float rChannel = Simplify(pixel.r);
 float gChannel = Simplify(pixel.g);
 float bChannel = Simplify(pixel.b);
 modWebCamTexture.SetPixel(i,j,new Color(rChannel,gChannel,bChannel, 1f))
 grayWebCamTexture.SetPixel(i,j,new Color(pixel.grayscale, pixel.grayscale, pixel.grayscale, 1f));
 }
 }

 Plane3.renderer.material.mainTexture=grayWebCamTexture;
 grayWebCamTexture.Apply();

 Plane2.renderer.material.mainTexture=modWebCamTexture;
 modWebCamTexture.Apply();

So after you have created this method, you
save your script and run the game scene in
engine. You should see three di�erent textures
all based on the same webcam data.

THE CONCLUSION

So in the beginning I discussed the CPU vs the
GPU. Heres why that is relevant. Right now,
this script is running on the CPU. Which, for the
most part ,is �ne. Modern CPUs have more
processors and are very e�cient. But say I
wanted to do a more complicated algorithm I
would have to �nd a way to push that to the
GPU where it is optimized to render pixel data.

The way that I can think to do this would be to
write a pixel shader that communicated to the
GPU my desired math. Unfortunately they
work together with vertex shaders in the pipe-
line (there is no vertex data here, we are
already working in 2D).

But it would be possible to pass the pixel
shader a position from the vertex shader and
do nothing with it. And that way we could
cheat our way into the CPU through shader
writing.

If I was to push these real time webcam
textures further I would probably follow that
course of action. None the less, unity gives you
access to a pretty neat feature and a possible
path to more self immersion in games.

 8 | Future Application

 static float Simplify (float x)
 {
 //Switch Function
 x*=255;//put color in an easy to read ratio from 0 to 255
 if(x>=0f && x<=20f)
 {
 x = 10f/255f;
 }
 else if(x>=21f && x<=40f)
 {
 x = 30f/255f;
 }
 else if(x>=41f && x<=60f)
 {
 x = 50f/255f;
 }
 else if(x>=61f && x<=80f)
 {
 x = 70f/255f;
 }
 else if(x>=81f && x<=100f)
 {
 x = 90f/255f;
 }
 else if(x>=101f && x<=120f)
 {
 x = 110f/255f;
 }
 else if(x>=121f && x<=140f)
 {
 x = 130f/255f;
 }
 else if(x>=141f && x<=160f)
 {
 x = 150f/255f;
 }
 else if(x>=121f && x<=140f)
 {
 x = 130f/255f;
 }
 else if(x>=141f && x<=160f)
 {
 x = 150f/255f;
 }
 else if(x>=161f && x<=180f)
 {
 x = 170f/255f;
 }
 else if(x>=181f && x<=200f)
 {
 x = 150f/255f;
 }
 else if(x>=201f && x<=220f)
 {
 x = 210f/255f;
 }
 else if(x>=221f && x<=240f)
 {
 x = 230f/255f;
 }
 else if(x>=241f && x<=255f)
 {
 x = 250f/255f;
 }
 return x;
 }

For the project used these resources:

Unity Scripting Documentation

http://docs.unity3d.com/Documentation/ScriptReference/

Nvidia Documentation

http://www.nvidia.com/object/feature_pixelshader.html

Thanks to the following people for bothering to talk to me about C#, webcamTexture and the
shader pipeline:

Chris Sosa
Isaiah Walker
Matt Burton
Laura Barton
Adam Grayson

9 | Resources

